Math 131
Exponentials/Logarithms Overview - February 18, 2009

1. Definition
(a) e is a real number (about 2.7).
(b) $e^{3}=e \cdot e \cdot e$, and $e^{0.5}=\sqrt{e}$. So $e^{3 / 2}=\sqrt{e^{3}}$.
(c) e^{x} can be similarly defined for all rational numbers, and filled in for irrational numbers by taking limits.
(d) $\ln x$ is the inverse function of e^{x}. This means that $\ln e^{x}=e^{\ln x}=x$.
2. Useful values and limits.

$$
\begin{array}{rlll}
e^{0} & =1, & & \lim _{x \rightarrow \infty} e^{x}=\infty, \quad \lim _{x \rightarrow-\infty} e^{x}=0 \\
\ln 1 & =0, & \ln e=1, \quad \lim _{x \rightarrow 0+} \ln x=-\infty, \quad \lim _{x \rightarrow \infty} \ln x=\infty
\end{array}
$$

Note: $\ln x$ is not defined for $x \leq 0$!
3. Change of base
(a) $2^{x}=\left(e^{\ln 2}\right)^{x}=e^{x \cdot \ln 2}$
(b) $\log _{2} x=\frac{\ln x}{\ln 2}$

In both formulas, 2 can be replaced by any positive number.
4. Derivatives and integrals

$$
\begin{aligned}
\frac{d}{d x} e^{x} & =e^{x}, & \frac{d}{d x} \ln x & =\frac{1}{x} \\
\int e^{x} d x & =e^{x}+C & \int \frac{1}{x} d x & =\ln |x|+C
\end{aligned}
$$

5. Derivatives in other bases:

We consider e^{x} and $\ln x$ rather than, say, 2^{x} and $\log _{2} x$ because their derivatives and integrals have these natural forms. Compare with the derivatives of 2^{x} and $\log _{2} x$:

$$
\begin{aligned}
\frac{d}{d x} 2^{x} & =\frac{d}{d x} e^{x \cdot \ln 2}=\ln 2 \cdot e^{x \cdot \ln 2}=\ln 2 \cdot 2^{x} \\
\frac{d}{d x} \log _{2} x & =\frac{d}{d x} \frac{\ln x}{\ln 2}=\frac{1}{x \cdot \ln 2}
\end{aligned}
$$

6. Fundamental identities:

$$
\begin{aligned}
e^{x+y} & =e^{x} e^{y} \quad\left(\text { i.e., } e^{x} \text { "turns }+ \text { into } \cdot\right. \text { ") } \\
e^{x y} & =\left(e^{x}\right)^{y} \\
\ln x y & \left.=\ln x+\ln y \quad \text { (i.e., } \ln x \text { "turns } \cdot \text { into }+{ }^{\prime \prime}\right) \\
\ln x^{y} & =y \ln x
\end{aligned}
$$

7. Graphs.
(The graph of $\ln x$ is that of e^{x} flipped over the line $y=x!$)

